
AI and Machine Learning for Real-Time Ray

Tracing

Chunan Huang, Jurgen Schulze; University of California, San Diego

Abstract

 The most used technique for 3D rendering

nowadays is Rasterization, which is faster

but provides less realistic images than

another technique, Ray Tracing. Although

Ray Tracing generates amazingly realistic

images, it carries a large computational cost

and needs a great amount of time to be done.

This makes Ray Tracing hard to be used in

scenarios that require instant results, like

real-time applications. If we can speed up

the Ray Tracing process, we can obtain

realistic images in real-time.

 There have been multiple classic

acceleration methods for Ray Tracing, and

hardware companies like Nvidia also

attempt to accelerate Ray Tracing with

specific hardware designs. In this paper, I

am about to dive into the new approach:

accelerate Ray Tracing with Machine

Learning and Artificial Intelligence

techniques. With these techniques, I was

able to speed up the rendering process of

Ray Tracing and use it in a real-time

application.

1. Introduction

 My research includes two parts. For the

first part, I investigated into recovering

incomplete images with Neural Networks.

The idea is that, during the ray tracing

process, we can calculate a smaller number

of pixels and only render a noisy image (the

uncalculated pixels will remain black as

noise). This would be faster than rendering a

complete image. Then, we can recover the

incomplete image with a pre-trained Neural

Network. With this approach, we do not

need to deal with the rendering details of

Ray Tracing and directly work on a rendered

image.

 As to the second approach, I dived into

the rendering details of Monte Carlo Path

Tracing and speeded it up with

Reinforcement Learning. The purpose of

this is to reduce the noisiness of images

rendered by Monte Carlo Path Tracing so

that it can use less sampling rays. I focused

more on this approach compared with the

first one. The details of this approach will be

mentioned more later.

2. Related Work

 For my first approach, I used a GAN

model with contextual attention1, which is

designed at the University of Illinois at

Urbana-Champaign and Adobe Research.

Among all networks I experimented on, this

model provides recovered images with the

best quality.

 For the second approach, the main idea is

proposed in a paper by Nvidia2. But it does

not provide details of implementation, so

how to use this idea in practice was my main

focus during the research (in section 4.3). I

adapted the idea and used it in a real-time

Ray Tracing application I made.

3. Approach One

3.1 Data Preparation

Since my purpose for this approach is to

recover noisy images with the Neural

Network, I need to prepare training data for

the network. An example of a noisy image is

shown in Figure1. This image is a

screenshot of the scene in the Ray Tracing

program I made and was added the “grid” as

noisy. To get multiple these screenshots as

training data, I created a script that

automatically takes screenshots on the scene

at random positions and directions (shown in

Figure2). With these images, I was able to

train the network.

3.2 Results

The well-trained network was able to

recover noisy images from the same scene.

The result is shown in Figure3 and Figure4.

The quality of all recovered images is very

good. The resolution of the images I

experimented on is 512 x 512.

3.2 Analysis

 Although the network can recover the

noisy images very well, there are several

significant drawbacks to this approach. The

first is that since the model was trained by

images of a specific scene, when the model

is used for another scene, the result is not

good. In another word, one trained model

can only be used by one application.

Another problem is that the GAN model is

very heavyweight, which means the training

process can take a very long time to

converge, especially on high-resolution

images. Besides, since the complexness of

the network, the recovering process of a

noisy image also takes time; in this case, the

time we saved by calculating fewer pixels

can be wasted on recovering the noisy

image.

Figure1: Only calculate ¼ of the total pixels

Figure2: Screenshots as training data

Figure3: Input noisy image

Figure4: The recovered image of Figure 3

4. Approach Two

4.1 Introduction

This approach is to improve the Monte

Carlo Path Tracing (MCPT). In MCPT, for

each pixel, the camera shots multiple rays

(sampling rays), and the color of this pixel is

the average of all rays’ colors. The problem

here is that, when the number of sampling

rays is too low, the resulting images can be

very noisy. Nonetheless, more sampling rays

means a longer rendering time. So, we want

to find a way to reduce the noisiness of

rendered images without increasing the

number of sampling rays.

Figure5 shows an image rendered with 8

sampling rays per pixel, and Figure6 shows

an image rendered with 64 sampling rays

per pixel. It is noticeable that more sampling

rays mean higher image quality. The reason

behind this is that, in MCPT, the reflection

of rays is random. Therefore, some pixels

can shoot rays that result in no color (didn’t

hit the light). When the number of sampling

is low, these non-contributing rays affect the

color of a pixel a lot and make the pixel

dark. These dark pixels are the noise in the

image.

Figure5: 8 samples per pixel

Figure6: 64 samples per pixel

 Therefore, we want to reduce the number

of rays with zero-contribution to decrease

the nosiness of the rendered image. We can

achieve this if the rays know where to find

the light and try to hit it. Hence, we need to

give rays the ability to learn, which can be

achieved by reinforcement learning2.

4.2 Overview of RL

The general idea of Reinforcement

Learning (RL) is demonstrated in Figire7:

the agent learns through its interactions with

the environment. The agent takes an action

and then transits to the resulting next state

and receiving a reward. To maximize the

reward, the agent will learn which action to

choose in what state. After multiple

attempts, the agent can learn which action is

the best under a particular state.

The specific method I used is Q-learning,

a model-free reinforcement learning

technique. During the learning process, the

Q-values for different states and actions,

Q(s, a), are updated by the Bellman

Equation :

In general, what it does is: when the agent is

at state S and chooses action A, which leads

it to the next state S’, the value of Q(S, A)

will be updated according to the reward it

gets at State S and the expectation of state

S’.

Figure7: Illustration of RL

4.3 Combine RL with MCPT

In the case of MCPT, the agent is a ray.

The state is a segment where the ray hits the

object and from which the ray reflects. The

action is the reflecting direction. And the

reward is the luminance of the object. Hence

the desired outcome is that, when a ray hits

an object (on a state), the reflecting ray will

more likely to go in the direction that leads

to light sources (choose a good action).

Segmenting the whole scene into states is

simple. Figure8 shows the segments of the

scene, with a different color representing a

state. The difficulty is how to map the

reflecting directions as actions because there

are infinite possible directions for a ray, but

we cannot have infinite actions under a state.

To resolve this, I choose 26 “standard

directions” as actions for the Q-learning

process. As shown in Figure9, from the

center of a 3 x 3 cube, there are 26

directions going to the outer 26 cubes. Each

of these directions is an action during the

learning process.

However, this does not mean that a ray

can only choose one of these 26 standard

directions when reflects. The reflecting

direction is still chosen randomly, but after

the reflecting direction is chosen, it will

update the Q-value of its nearest standard

direction. For example, a ray hit on a state S,

and it randomly chooses the reflecting

direction, D. The closest standard direction

to D is A. So, the reward D gets will be used

to update the Q-value of Q(S, A). With this

method, a ray can still have infinite

reflecting directions, but the actions of Q-

learning are finite.

Figure8: segments of the scene

Figure9: 26 standard directions

Then, after the learning process, the

learned result will be used to bias the

decision of reflecting direction, encouraging

the rays to hit the lights. When a ray reflects,

the direction is chosen using Alorigthm1.

Algorithm1 Choose reflecting direction

1. Ray hits at state S;

2. A is the set of 26 actions;

3. Max Q-value at S, M_v= maxa∈A Q(S, a);

4. for i = 7,…,1 do

5. reflecting direction d = rand_direction();

6. Find d’s nearest standard direction a;

7. if Q(S, a) > i * 0.125 * M_v:

8. break;

9. end for

10. return d

With this algorithm, rays can still reflect in

any directions, but more likely to reflect in a

direction that will yield high reward (ie. hit

the lights).

4.4 Results

Figure10 and Figure11 show the

difference between using and not using RL

during MCPT. For each image, the left half

is rendered without RL and the right half

with. All these three images are rendered

with 8 sampling rays per pixel. We can

notice a great difference in terms of the

noisiness. Rendering with RL also makes

the scene brighter overall, since the rays are

more likely to hit the light sources now.

This approach also helps increase the

image quality when the number of sampling

rays is high. As shown in Figure12 and

Figure13 (check the difference in noisiness

of the floor). These images are rendered

with 80 rays per pixel.

With this method, we can render images

with the same quality using less sampling

rays, which provides a great speedup.

Figure10: 8 rays per pixel comparison

Figure11: 8 rays per pixel comparison

Figure12: 80 rays per pixel comparison

Figure13: 80 rays per pixel comparison

5. Conclusion

I experimented on two approaches to

speed up Ray Tracing using AI/ML

techniques. The first approach utilizes the

current progress in GAN and directly deals

with the rendered images; it can be used as a

separate part and does not require any

modifications of the rendering process. The

second approach combines the AI technique,

Reinforcement Learning, with Monte Carlo

Path Tracing and enables it to render

realistic images without using a large

number of sampling rays.

6. Acknowledgment

This project was conducted by me,

Chunan Huang, as an Honors Thesis

Research under the supervision of Professor

Jurgen Schulze at the University of

California, San Diego. The machines used

for the purpose of this research are provided

by the Immersive Visualization Lab under

Professor Jurgen Schulze at the University

of California, San Diego.

7. Reference

[1] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui

Shen, Xin Lu, Thomas S. Huang. “Generative

Image Inpainting with Contextual Attention.”

Mar 21, 2018

[2] Ken Dahm, Alexander Keller. “Learning

Light Transport the Reinforced Way.” Aug 15,

2017

