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Abstract 

    The most used technique for 3D rendering 

nowadays is Rasterization, which is faster 

but provides less realistic images than 

another technique, Ray Tracing. Although 

Ray Tracing generates amazingly realistic 

images, it carries a large computational cost 

and needs a great amount of time to be done. 

This makes Ray Tracing hard to be used in 

scenarios that require instant results, like 

real-time applications. If we can speed up 

the Ray Tracing process, we can obtain 

realistic images in real-time. 

    There have been multiple classic 

acceleration methods for Ray Tracing, and 

hardware companies like Nvidia also 

attempt to accelerate Ray Tracing with 

specific hardware designs. In this paper, I 

am about to dive into the new approach: 

accelerate Ray Tracing with Machine 

Learning and Artificial Intelligence 

techniques. With these techniques, I was 

able to speed up the rendering process of 

Ray Tracing and use it in a real-time 

application.  

 

1. Introduction 

    My research includes two parts. For the 

first part, I investigated into recovering 

incomplete images with Neural Networks. 

The idea is that, during the ray tracing 

process, we can calculate a smaller number 

of pixels and only render a noisy image (the 

uncalculated pixels will remain black as 

noise). This would be faster than rendering a 

complete image. Then, we can recover the 

incomplete image with a pre-trained Neural 

Network. With this approach, we do not 

need to deal with the rendering details of 

Ray Tracing and directly work on a rendered 

image.  

    As to the second approach, I dived into 

the rendering details of Monte Carlo Path 

Tracing and speeded it up with 

Reinforcement Learning. The purpose of 

this is to reduce the noisiness of images 

rendered by Monte Carlo Path Tracing so 

that it can use less sampling rays. I focused 

more on this approach compared with the 

first one. The details of this approach will be 

mentioned more later. 

 

2. Related Work 

    For my first approach, I used a GAN 

model with contextual attention1, which is 

designed at the University of Illinois at 

Urbana-Champaign and Adobe Research. 

Among all networks I experimented on, this 

model provides recovered images with the 

best quality. 



    For the second approach, the main idea is 

proposed in a paper by Nvidia2. But it does 

not provide details of implementation, so 

how to use this idea in practice was my main 

focus during the research (in section 4.3). I 

adapted the idea and used it in a real-time 

Ray Tracing application I made.  

 

3. Approach One 

3.1 Data Preparation  

Since my purpose for this approach is to 

recover noisy images with the Neural 

Network, I need to prepare training data for 

the network. An example of a noisy image is 

shown in Figure1. This image is a 

screenshot of the scene in the Ray Tracing 

program I made and was added the “grid” as 

noisy. To get multiple these screenshots as 

training data, I created a script that 

automatically takes screenshots on the scene 

at random positions and directions (shown in 

Figure2). With these images, I was able to 

train the network.    

3.2 Results 

The well-trained network was able to 

recover noisy images from the same scene. 

The result is shown in Figure3 and Figure4. 

The quality of all recovered images is very 

good. The resolution of the images I 

experimented on is 512 x 512. 

3.2 Analysis 

    Although the network can recover the 

noisy images very well, there are several 

significant drawbacks to this approach. The 

first is that since the model was trained by 

images of a specific scene, when the model 

is used for another scene, the result is not 

good. In another word, one trained model 

can only be used by one application. 

Another problem is that the GAN model is 

very heavyweight, which means the training 

process can take a very long time to 

converge, especially on high-resolution 

images. Besides, since the complexness of 

the network, the recovering process of a 

noisy image also takes time; in this case, the 

time we saved by calculating fewer pixels 

can be wasted on recovering the noisy 

image.    

 

Figure1: Only calculate ¼ of the total pixels 

 

Figure2: Screenshots as training data 

 

Figure3: Input noisy image 



 

Figure4: The recovered image of Figure 3 

 

4. Approach Two 

4.1 Introduction 

This approach is to improve the Monte 

Carlo Path Tracing (MCPT). In MCPT, for 

each pixel, the camera shots multiple rays 

(sampling rays), and the color of this pixel is 

the average of all rays’ colors. The problem 

here is that, when the number of sampling 

rays is too low, the resulting images can be 

very noisy. Nonetheless, more sampling rays 

means a longer rendering time. So, we want 

to find a way to reduce the noisiness of 

rendered images without increasing the 

number of sampling rays. 

Figure5 shows an image rendered with 8 

sampling rays per pixel, and Figure6 shows 

an image rendered with 64 sampling rays 

per pixel. It is noticeable that more sampling 

rays mean higher image quality. The reason 

behind this is that, in MCPT, the reflection 

of rays is random. Therefore, some pixels 

can shoot rays that result in no color (didn’t 

hit the light). When the number of sampling 

is low, these non-contributing rays affect the 

color of a pixel a lot and make the pixel 

dark. These dark pixels are the noise in the 

image.   

 

Figure5: 8 samples per pixel 

 

Figure6: 64 samples per pixel 

    Therefore, we want to reduce the number 

of rays with zero-contribution to decrease 

the nosiness of the rendered image. We can 

achieve this if the rays know where to find 

the light and try to hit it. Hence, we need to 

give rays the ability to learn, which can be 

achieved by reinforcement learning2. 

4.2 Overview of RL 

The general idea of Reinforcement 

Learning (RL) is demonstrated in Figire7: 

the agent learns through its interactions with 

the environment. The agent takes an action 

and then transits to the resulting next state 

and receiving a reward. To maximize the 

reward, the agent will learn which action to 

choose in what state. After multiple 

attempts, the agent can learn which action is 

the best under a particular state. 

The specific method I used is Q-learning, 

a model-free reinforcement learning 

technique. During the learning process, the 

Q-values for different states and actions, 



Q(s, a), are updated by the Bellman 

Equation : 

 

In general, what it does is: when the agent is 

at state S and chooses action A, which leads 

it to the next state S’, the value of Q(S, A) 

will be updated according to the reward it 

gets at State S and the expectation of state 

S’.  

 

Figure7: Illustration of RL 

4.3 Combine RL with MCPT 

In the case of MCPT, the agent is a ray. 

The state is a segment where the ray hits the 

object and from which the ray reflects. The 

action is the reflecting direction. And the 

reward is the luminance of the object. Hence 

the desired outcome is that, when a ray hits 

an object (on a state), the reflecting ray will 

more likely to go in the direction that leads 

to light sources (choose a good action).  

Segmenting the whole scene into states is 

simple. Figure8 shows the segments of the 

scene, with a different color representing a 

state. The difficulty is how to map the 

reflecting directions as actions because there 

are infinite possible directions for a ray, but 

we cannot have infinite actions under a state. 

To resolve this, I choose 26 “standard 

directions” as actions for the Q-learning 

process. As shown in Figure9, from the 

center of a 3 x 3 cube, there are 26 

directions going to the outer 26 cubes. Each 

of these directions is an action during the 

learning process. 

However, this does not mean that a ray 

can only choose one of these 26 standard 

directions when reflects. The reflecting 

direction is still chosen randomly, but after 

the reflecting direction is chosen, it will 

update the Q-value of its nearest standard 

direction. For example, a ray hit on a state S, 

and it randomly chooses the reflecting 

direction, D. The closest standard direction 

to D is A. So, the reward D gets will be used 

to update the Q-value of Q(S, A). With this 

method, a ray can still have infinite 

reflecting directions, but the actions of Q-

learning are finite.     

 

Figure8: segments of the scene 

 

Figure9: 26 standard directions 

Then, after the learning process, the 

learned result will be used to bias the 

decision of reflecting direction, encouraging 

the rays to hit the lights. When a ray reflects, 

the direction is chosen using Alorigthm1.  



Algorithm1 Choose reflecting direction 

1. Ray hits at state S; 

2. A is the set of 26 actions; 

3. Max Q-value at S, M_v= maxa∈A Q(S, a);  

4. for i = 7,…,1 do 

5.     reflecting direction d = rand_direction(); 

6.     Find d’s nearest standard direction a; 

7.     if Q(S, a) > i * 0.125 * M_v:  

8.         break; 

9. end for 

10. return d  

With this algorithm, rays can still reflect in 

any directions, but more likely to reflect in a 

direction that will yield high reward (ie. hit 

the lights). 

4.4 Results 

Figure10 and Figure11 show the 

difference between using and not using RL 

during MCPT. For each image, the left half 

is rendered without RL and the right half 

with. All these three images are rendered 

with 8 sampling rays per pixel. We can 

notice a great difference in terms of the 

noisiness. Rendering with RL also makes 

the scene brighter overall, since the rays are 

more likely to hit the light sources now.  

This approach also helps increase the 

image quality when the number of sampling 

rays is high. As shown in Figure12 and 

Figure13 (check the difference in noisiness 

of the floor). These images are rendered 

with 80 rays per pixel.  

With this method, we can render images 

with the same quality using less sampling 

rays, which provides a great speedup.     

 

Figure10: 8 rays per pixel comparison 

 

Figure11: 8 rays per pixel comparison 

 

Figure12: 80 rays per pixel comparison 

 

Figure13: 80 rays per pixel comparison 



5. Conclusion 

I experimented on two approaches to 

speed up Ray Tracing using AI/ML 

techniques. The first approach utilizes the 

current progress in GAN and directly deals 

with the rendered images; it can be used as a 

separate part and does not require any 

modifications of the rendering process. The 

second approach combines the AI technique, 

Reinforcement Learning, with Monte Carlo 

Path Tracing and enables it to render 

realistic images without using a large 

number of sampling rays.  
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